
White Paper: Legacy Gaiji Solutions & SING
Version: July 16, 2008

Dr. Ken Lunde
Senior Computer Scientist, CJKV Type Development, Adobe Systems Incorporated

lunde@adobe.com
There have been a myriad of solutions to the so-called gaiji problem, collectively referred to as 
legacy gaiji solutions in this document. Given the complex and broad nature of the gaiji prob-
lem, it should not be a surprise that many solutions have been developed and deployed over the 
years. Most importantly, no one can deny that many of these legacy gaiji solutions work, but with 
obvious limitations or drawbacks. The first two pages of this White Paper shall focus on these 
legacy gaiji solutions. The last two pages shall focus on SING, an acronym for Smart INdepen-
dent Glyphlets, as a gaiji solution without the drawbacks of legacy gaiji solutions.

The Gaiji Problem
The gaiji problem can be easily described as the absence of desired glyphs. Because fonts rep-
resent a critical or key component of writing using digital media, and because fonts are finite 
collections of glyphs, which are based on one or more character set standards, it is natural and 
expected that there will be times when a desired glyph is not present in a font. Western writing 
systems are, for the most part, limited and closed. Their letters combine in a sequence to form 
higher-level linguistic entities, such as words. East Asian writing systems include thousands or 
tens of thousands of ideographs, which represent an open-ended writing system. It is a trivial 
process to coin a new ideograph, or to create a new variant of an existing ideograph.
The gaiji problem also applies to Western writing systems, such as for logos or new symbols. 
When a new currency symbol is established, there is always a frantic scramble to add its glyph to 
existing fonts, and to also make sure that it becomes part of Unicode in a timely manner. In fact, 
in the past we provided “euro symbol” gaiji fonts that supplemented legacy fonts.

What Is A Gaiji?
The prototypical gaiji is an ideograph, and is either a stand-alone character, or a variant form of 
an ideograph that is already encoded. But, a gaiji can be any glyph, as long as the user cannot 
enter it. A gaiji can be a generic symbol, a corporate logo, or a new currency symbol. It may or 
may not be in Unicode. It may be in a known glyph set. It may be in a font, but simply not ac-
cessible due to IME limitations or other reasons. What is key is that the desired glyph is either 
not available in any installed font, or is desired in the style of the currently selected font, but is 
not available in that style.

Legacy Gaiji Solutions
Legacy gaiji solutions are almost always font-based, but other techniques have been implement-
ed by those without the ability to develop fonts, such as inline graphics, and even hand-written 
after the document has been printed, using a textual element or graphic as a place-holder or 
indicator. Because nearly all gaiji are intended to be typeset as though they were characters, font-
based solutions are almost always desired over solutions that involve inline graphics.
Legacy gaiji solutions can and do work most of the time. And, for some users, these legacy gaiji 
solutions might be ideal, because they are able to achieve the desired end result. The more closed 
a system or environment is, the better these legacy gaiji solutions tend to function. Today’s trend, 
however, is toward open systems. Legacy gaiji solutions fall short when portability and document 
interchange, necessitated by open systems or environments, become part of the workflow.

bc



What Motivates Gaiji Solutions?
What drives the vast majority of legacy gaiji solutions is simply being aware that if one encodes 
a glyph, and as long as the code point of the glyph is known, it can be entered into a document. 
Thus, there is a very strong motivation to encode gaiji. The encoding requirement is why legacy 
gaiji solutions work most of the time, and for some users in some environments, all of the time.

How Are Gaiji Encoded?
Early gaiji fonts were encoded in a single-byte array, meaning less than 256 code points were 
used. Multiple single-byte gaiji fonts were once used if the number of gaiji exceeded the limits 
of a single-byte array. Now, Shift-JIS encoding’s 1,880 user-defined code points, or Unicode’s 
PUA (Private Use Area) are generally used for encoding gaiji. Unicode supports 6,400 PUA code 
points in the BMP (Basic Multilingual Plane), and an additional 131,068 in Planes 15 and 16. 
Adobe Type Composer (ATC) allowed users to effectively add multiple single-byte gaiji fonts to 
existing fonts, but only on Mac OS, only for specific font formats, and only for Shift-JIS encod-
ing. Microsoft’s EUDC (End User Defined Character) mechanism that is specific to Windows® 
makes use of PUA code points.
Another approach to encoding gaiji involves a technique referred to as code point poaching in 
which an existing—and typically inappropriate—code point is used to encode gaiji. To some ex-
tent, single-byte gaiji fonts use this technique. Code point poaching can result in unpredictable 
behavior due to the properties that are associated with code points, which can affect line break-
ing, spacing, and other line-layout behaviors. PUA code points have no intrinsic properties, so 
their behavior tends to be more predictable.
However, PUA code points work only if no one is using the same code point for a different pur-
pose. Consider two different gaiji, made by two different users or companies, that are encoded at 
the same PUA code point. This is a recipe for trouble, especially if these two gaiji are expected to 
be used in the same font, system, or environment.

How Are Gaiji Entered Into Documents?
Because gaiji are encoded, what ultimately is entered into a document is a code point, and the 
selected font hopefully encodes the gaiji at the same code point. Input by code point, or through 
the use of a palette or panel, is common. For larger and somewhat more standardized collec-
tions of gaiji, such as those offered by Biblos Font, additional dictionary entries for one or more 
commonly used IMEs are often included, which effectively enable user input through the use of 
single-character or compound readings.

Gaiji Font Implementations
In the past, before OpenType® and Unicode became widely used, typical gaiji fonts were imple-
mented as one or more single-byte Type 1 fonts. These Type 1 gaiji fonts would be used stand-
alone, or combined and added to the user-defined region of a larger font using ATC. OpenType 
effectively enabled gaiji font creators to break away from the single-byte limitations, and Uni-
code increased the number of available code points at which the gaiji can be encoded.

Why Do Legacy Gaiji Solutions Fail?
Portability is the primary reason why legacy gaiji solutions fail. Their code points, whether PUA 
or poached, are not portable. As long as the system or environment is closed, portability is obvi-
ously not an issue. If document interchange is important, even within a closed system or envi-
ronment, all the components that comprise the legacy gaiji solution must be included with the 
document. Legacy gaiji solutions thus depend on one or more special fonts to be installed.
In summary, we can state that the gaiji problem issue that needs to be solved is thus portability, 
which affects the glyphs themselves, and the requirement to encode them.

bc



SING—Smart INdependent Glyphlets
Adobe Systems exhaustively explored and carefully studied the shortcomings of legacy gaiji so-
lutions, and SING, an acronym for Smart INdependent Glyphlets, was conceived as a new gaiji 
solution.
Put simply, SING was specifically designed from the beginning to be a gaiji solution without the 
shortcomings and deficiencies that plague legacy gaiji solutions. Where legacy gaiji solutions fail 
the all-important portability test, meaning that document interchange is a challenge and hurdle, 
SING passes this test with flying colors. SING also does not require that gaiji be encoded in order 
to be minimally or fully functional.
SING represents a gaiji solution that is implemented through the creation, distribution, and use 
of small font-like objects called SING glyphlets, along with libraries and applications to manage 
and use them.

What Is A SING Glyphlet?
A SING glyphlet is effectively a small OpenType font that lacks the key tables, such as ‘name’ and 
‘OS/2’, that would otherwise allow it to become selectable in application font menus.
A SING glyphlet includes one meaningful glyph at GID+1. Additional functional glyphs, such as 
a vertical variant, or other contextual variants, can be included at GID+2 or greater. Because the 
typical number of glyphs in a SING glyphlet is one, it is therefore small and lightweight.
The small and lightweight nature of a SING glyphlet means that it can travel easily and quickly. 
A SING glyphlet is intended to be sticky to the document in which it is used, by being embed-
ded. A SING glyphlet is thus portable. This characteristic of SING clearly solves the portability 
issue that is inherent in legacy gaiji solutions. Due to its architecture, gaiji that are implemented 
as SING glyphlets are easily recognized and distinguished from other glyphs. When a standard 
font resource is used as a gaiji font, distinguishing gaiji from non-gaiji becomes a much greater 
challenge, and necessitates heuristics. Heuristics have a strong tendency to fail.
The glyph that is represented by the SING glyphlet does not need to be encoded. If there is an ap-
propriate Unicode code point for its primary glyph, it can be used, but this is not a requirement. 
The metadata that is included in the ‘META’ table serves to identify and classify the glyph so 
that it can behave as though it were a standard character. Legacy gaiji solutions require that their 
glyphs be encoded, because they cannot be embedded in the document in which they are used.

How Does SING Work?
The current implementation of SING, as deployed in CCJK versions of Adobe® InDesign® CS2 
and CS3 software, makes use of two libraries. The SING Library, used by Adobe SING Glyphlet 
Manager (ASGM), organizes SING glyphlets, and makes them available to SING-savvy applica-
tions. The Tin Library is used by SING-savvy applications to augment installed fonts with the 
SING glyphlets that refer to them in their META.IDs 2 (BaseFontName) and 25 (LocalizedBase-
FontName) fields.
After the Tin Library augments installed fonts with the appropriate SING glyphlets, the glyphs 
that correspond to the SING glyphlets behave as though they are among the standard glyphs in 
the installed fonts. They appear in the Glyph Panel, and can interact with other glyphs.

How Are SING Glyphlets Created?
SING glyphlets can be created, by developers and end users, through the use of at least four 
known tools, two of which were developed by Adobe Systems.
Adobe Systems developed and currently maintains the cvt2sing command-line tool, which is 
a very robust and industrial-strength SING glyphlet compiler, and is included in the Glyphlet 

bc



Development Kit (GDK).* Metadata and other information are specified in an XML file, which 
serves as input to cvt2sing, along with a font resource that contains the desired glyph data.
Adobe Illustrator® CS2 and later, purchased as part of the Adobe Creative Suite® with Adobe 
InDesign, includes a plug-in called Glyphlet Creation Tool (GCT) that is specifically designed 
to build SING glyphlets, with the obvious added feature to design the glyphs themselves using 
the strong drawing capabilities in Illustrator, along with access to the glyph outlines of installed 
fonts.
FontLab’s SigMaker, Version 3.0 and later, includes options and features for building metadata-
rich SING glyphlets, and runs on Mac OS X and Windows.†

Musashi System’s SINGEdit represents another program for building SING glyphlets.‡ Although 
the program itself runs only on Windows, the SING glyphlets that it builds are cross-platform.

Why Does SING Better Serve Customer Needs Than Legacy Gaiji Solutions?
As stated in the first half of this White Paper, the more closed a system or environment is, the 
better that legacy gaiji solutions tend to function. SING is specifically designed to work with 
open systems and environments, and is expected to function the same way no matter how closed 
or open a system or environment is. No legacy gaiji solution can make such a claim.
Removing the requirement to encode gaiji clearly distinguishes SING from legacy gaiji solutions 
that require their glyphs to be encoded. In fact, SING disallows PUA code points to be used in 
the ‘META’ table of SING glyphlets.
The most profound advantages of SING, when compared to legacy gaiji solutions, are its por-
tability and document interchange properties, along with the self-contained nature of SING 
glyphlets. In other words, SING glyphlets are intended to travel with the documents in which 
they are used, through all stages of the documents’ workflow. SING glyphlets are thus sticky to a 
document. The fact that SING glyphlets are small, lightweight, and self-contained makes porta-
bility and document interchange possible.

How Do We Make SING Successful?
First and foremost, relative to the Adobe InDesign CS2/CS3 implementations, SING requires 
performance enhancements, in terms of the speed of font augmentation, which subsequently 
affects its ability to handle a larger number of glyphlets. This performance enhancement work 
is already underway.
PDF Version 1.3 and greater, is SING-compatible in that SING glyphlets properly embed as 
glyphs, and thus display and print properly, but they lose their all-important metadata.
Lastly, SING needs to be supported by third-party applications and at the OS level. Clearly, in 
order for this to happen, we must first make SING functional and successful in more of our own 
applications. Our own efforts with regard to the deployment of SING sends a clear and strong 
message to third-party application and OS developers, in terms of our commitment to the tech-
nology, and the extent to which it is supported in our own products.
We are very fortunate that we develop a broad range of applications that cover the document 
workflow, meaning that even without third-party application, IME, or OS support, we have the 
ability to deliver a fully-functional gaiji solution to our customers through SING. A business 
case for SING necessarily spans the entire globe, not merely Japan. The global publishing market 
cannot be conquered until the gaiji problem has been solved.

*	 http://www.adobe.com/devnet/opentype/gdk/topic.html
†	http://www.fontlab.com/font-utility/sigmaker/
‡	http://musashi.or.tv/singedit.htm

© 2008 Adobe Systems Incorporated. All Rights Reserved. Adobe, the Adobe logo, Creative Suite, Illustrator and InDesign are 
either registered trademarks or trademarks of Adobe Systems Incorporated in the U.S. and/or other countries. OpenType and 
Windows are either registered trademarks or trademarks of Microsoft Corporation in the U.S. and/or other countries. Mac is a 
trademark of Apple, Incorporated, registered in the United States and other countries.


