Posts in Category "Unicode"

UTR #50 Released!

The Unicode Consortium announced the release of UTR #50, Unicode Vertical Text Layout, today, via Twitter and their blog. Although I was involved in this Unicode Technical Report to some extent, any congratulatory comments should be directed toward its original and current editors, Eric Muller and Koji ISHII (石井宏治), respectively.

A Tale of Three (OpenType) Features

In an effort to make sure that the infrastructure to support UTR #50 (Unicode Vertical Text Layout) will be in place—sooner rather than later—I spent a significant part of last week working with key people within Adobe, and at Microsoft and W3C, to put together a proposal for a new OpenType feature, to be tagged ‘vrtr’, for supporting this soon-to-be published standard. Below is full description that we came up with, and which was submitted for inclusion in the OpenType Specification and in OFF (ISO/IEC 14496-22 or Open Font Format):

Tag: ‘vrtr’

Friendly name: Vertical Alternates For Rotation

Registered by: Adobe/Microsoft/W3C

Function: Transforms default glyphs into glyphs that are appropriate for sideways presentation in vertical writing mode. While the glyphs for most characters in East Asian writing systems remain upright when set in vertical writing mode, glyphs for other characters—such as those of other scripts or for particular Western-style punctuation—are expected to be presented sideways in vertical writing.

Example: As a first example, the glyphs for FULLWIDTH LESS-THAN SIGN (U+FF1C; “<”) and FULLWIDTH GREATER-THAN SIGN (U+FF1E; “>”) in a font with a non-square em-box are transformed into glyphs whose aspect ratio differs from the default glyphs, which are properly sized for sideways presentation in vertical writing mode. As a second example, the glyph for LEFT SQUARE BRACKET (U+005B, “[“) in a brush-script font that exhibits slightly rising horizontal strokes may use an obtuse angle for its upper-left corner when in horizontal writing mode, but an alternate glyph with an acute angle for that corner is supplied for vertical writing mode.

Recommended implementation: The font includes versions of the glyphs covered by this feature that, when rotated 90 degrees clockwise by the layout engine for sideways presentation in vertical writing, differ in some visual way from rotated versions of the default glyphs, such as by shifting or shape. The vrtr feature maps the default glyphs to the corresponding to-be-rotated glyphs (GSUB lookup type 1).

Application interface: For GIDs found in the vrtr coverage table, the layout engine passes GIDs to the feature, then gets back new GIDs.

UI suggestion: This feature should be active by default for sideways runs in vertical writing mode.

Script/language sensitivity: Applies to any script when set in vertical writing mode.

Feature interaction: The vrtr and vert features are intended to be used in conjunction: vrtr for glyphs intended to be presented sideways in vertical writing, and vert for glyphs to be presented upright. Since they must never be activated simultaneously for a given glyph, there should be no interaction between the two features. These features are intended for layout engines that graphically rotate glyphs for sideways runs in vertical writing mode, such as those conforming to UTR#50. (Layout engines that instead depend on the font to supply pre-rotated glyphs for all sideways glyphs should use the vrt2 feature in lieu of vrtr and vert.) Because vrt2 supplies pre-rotated glyphs, the vrtr feature should never be used with vrt2, but may be used in addition to any other feature.

Continue reading…

The Adobe-Identity-0 ROS & Heuristics

I have advocated the use of the special-purpose and language-neutral Adobe-Identity-0 ROS over the past few years, and have developed several CID-keyed fonts that take advantage of this ROS, but keep in mind that its use can act like a double-edge sword.

On one hand, it provides font developers with great flexibility, in terms of the glyph complement of a font. In other words, font developers need not be restricted to one of our public CJK ROSes, such as Adobe-Japan1-6, or a subset thereof. Kazuraki is an example of a Japanese font whose glyph set requirements didn’t fit Adobe-Japan1-6, so the Adobe-Identity-0 ROS was used.

On the other hand, font developers need to develop all of the necessary resources, such as the UTF-32 CMap Resource that is used as the basis of the ‘cmap‘ table, which maps Unicode code points to glyphs in the font, along with any GSUB features. In addition, and because the Adobe-Identity-0 ROS is language-neutral in that its designation does not specify or suggest a primary language, some applications may incorrectly assign a primary language to such fonts. This, of course, is due to heuristics (発見的教授法 in Japanese), or more specifically, their failure.
Continue reading…

Font Development Via Unicode

Unicode has become the de facto way in which to represent text in digital form, and for good reason: its character set covers the vast majority of the world’s scripts. Other benefits of Unicode include the following:

  • That it is under active and continuous development, meaning that with each new version, more scripts are being supported, and additional characters for existing scripts are being standardized.
  • That it is aligned and kept in sync with ISO/IEC 10646 (available at no charge), which is quite a feat.

With regard to font development, Unicode is considered the default encoding for OpenType, which refers to the ‘cmap‘ table. The most common ‘cmap’ subtables are Formats 4 (BMP-only UTF-16) and 12 (UTF-32). The latter is used only when mappings outside of the BMP (Basic Multilingual Plane), meaning from one or more of the 16 Supplementary Planes, are used.
Continue reading…

「CSS Orientation Test OpenType Fonts」について

[This Japanese version of the May 31, 2013 article entitled CSS Orientation Test OpenType Fonts is courtesy of Hitomi Kudo (工藤仁美).]

五月三十一日にアドビの新しいオープンソースプロジェクトで、「CSS Orientation Test OpenType Fonts」をリリースしたのでお知らせします。このオープンソースプロジェクトは、Unicodeの次期UTR #50(「Unicode Vertical Text Layout」)のエディタである石井宏治氏のリクエストをもとに開発された、二つのOpenType/CFFフォントを含みます。これらフォントの目的は、フォント開発者がより簡単にグリフの方向に関するテストを行えるよう考慮したものです。
Continue reading…

CSS Orientation Test OpenType Fonts

I am pleased to announce that the new CSS Orientation Test OpenType Fonts open source project was launched on Adobe’s open-source portal, Open@Adobe, today. This open source project consists of two OpenType/CFF fonts that were developed at the request of Koji Ishii (石井宏治), the editor of Unicode’s forthcoming UTR #50 (Unicode Vertical Text Layout). The purpose of these fonts is for developers to be able to more easily test whether glyph orientation in their implementation is correct or not.
Continue reading…

OpenType ‘cmap’ Table Ramblings

OpenType fonts are ‘sfnt’ (scalable font) resources that are comprised of several well-defined tables. One of these tables, which is the topic of today’s article, is the ‘cmap‘ (character map) table. The ‘cmap’ table, put simply, maps characters codes to Glyph IDs (GIDs) that refer to glyphs in the ‘glyf‘ or ‘CFF‘ (Compact Font Format) table, depending on the “flavor” of the OpenType font. What is important about the ‘cmap’ table is that it makes the glyphs usable. Without the ability to map from character codes, which are used by virtually all applications and OSes, the glyphs in a font are useless, and cannot be readily accessed or used.
Continue reading…

Adobe Blank: Another Adobe-Identity-0 Implementation

As I wrote nearly a year ago, the Adobe-Identity-0 ROS is useful for building special-purpose fonts, especially CJK ones whose glyph coverage does not match one of our public ROSes. Our latest Adobe-Identity-0 ROS font is the open-source Adobe Blank, whose purposes and implementation details are described on our sister blog, Typblography.

Sequences

Sequences are important in the context of Unicode, and UAX #34 (Unicode Named Character Sequences) is a good reference for Unicode sequences. The first type of sequence that typically comes to mind in the context of Japanese are Ideographic Variation Sequences (IVSes), which are registered and maintained by The Unicode Consortium via the Ideographic Variation Database (IVD). There are also Standardized Variation Sequences that are much more closely bound to the standard.
Continue reading…

Standardized Variants—Part 3

I will close this particular topic by detailing how to support these proposed standardized variants in OpenType/CFF fonts.

For fonts that are currently IVS-enabled, such as those that include Format 14 ‘cmap’ subtables with Adobe-Japan1 or Hanyo-Denshi IVSes, it is important to note that the proposed standardized variants can co-exist with them, at least in terms of being specified in the font. For the former, I created an Adobe-Japan1_sequences.txt file that includes all registered Adobe-Japan1 IVSes, along with 89 of the 1,002 proposed standardized variants. The 89 standardized variants are at the end of the file. AFDKO tools, such as makeotf and spot, already support these standardized variants. When building OpenType/CFF fonts using the makeotf tool, this file is specified as the argument of the “-ci” command-line option.
Continue reading…