Posts in Category "Using Fonts"

The Experimental “PanCJKV” IVD Collection

One of my longer term goals for the open source Source Han Sans project has been to eventually register a Pan-CJK IVD (Ideographic Variation Database) collection that would allow the regional variants to display and be preserved in “plain text” environments, and I think that I may have achieved a breakthrough the other day.
Continue reading…

Exploring Typekit’s New Dynamic Kits

While I won’t repeat here any of the exciting details in Typekit’s recent announcement for East Asia web font support (简体中文, 繁體中文, 日本語, 한국어) that employs dynamic kits, I’d like to seize this opportunity to demonstrate some of the default behavior that this new development exposes in various browsers.
Continue reading…

Source Han Sans Version 1.004 Update

Due to an inadvertent error on my part, the glyphs for the vertical-only kana were incorrect in Source Han Sans Version 1.002 (and, by extension, in Version 1.003 because there were no glyph changes). Many thanks to the person who identified and reported this issue, and I’d like to convey my sincere apologies to those who were affected by it.
Continue reading…

Introducing Source Han Code JP

[This article was written by Masataka HATTORI (服部正貴) and translated into English by yours truly.]

Source Han Code JP(日本語メニューネーム:源ノ角ゴシック Code JP)は、自分がほしくて個人的にはじめたオープンソースプロジェクトでした。Source Han Sans(源ノ角ゴシック)と Source Code Pro をフォールバックするエディタで使うと、漢字・仮名とくらべ英数字が小さくなってしまい全体的に読みにくいと感じていました。そんなとき、友人のプログラマーから、日本語も使えてコーディングにも適したフォントはないか?と相談されて、これは自分で作ってしまえと考えました。

オリジナルの Source Code Pro は、600 ユニット字幅を採用した欧文専用のモノスペースフォントで、まぎらわしいアルファベットや数字をディスプレイで判別しやすくするために、文字のデザインが工夫されています。それを、Source Han Sans JP(源ノ角ゴシック JP)の日本語と合わせてもフィットするようにサイズやウエイトを調整しました。文字幅は 660 ユニットあたりがちょうど良いと思いました。もともと読みやすさの観点から半角欧文はすこしコンデンスすぎると感じていたので、思い切って 2/3(667 ユニット)字幅を採用することにしました。一般的な半角(500 ユニット字幅)の等幅フォントにくらべ、全角文字との正確なインデントには向きませんが、読みやすさを確保しつつ、使い方次第で様々な表現ができると思いました。Source Han Code JP は、オリジナルの Source Han Sans JP と同じ7ウェイトのファミリーですが、ウェイトを切り替えても文字列の長さは変わりません。

結果的に、日本語を含むプログラミングやマークアップなどソースコードの表示や編集に使用できる Adobe Source シリーズの派生フォントとして、Adobe Fonts GitHub サイトから公開することになりました。

服部正貴

Read in English

Source Han Sans Version 1.003 Update

Although it has been less than two months since the Source Han Sans Version 1.002 update was released, a Version 1.003 maintenance update was released on 2015-06-09 to address two particular issues. No glyphs nor Unicode mappings were added or modified.

Google’s corresponding Noto Sans CJK fonts, which continue to differ from Source Han Sans only by name, were also updated to Version 1.003 at the same time, and reflect the same changes.
Continue reading…

Source Han Sans Version 1.002 Update

The Source Han Sans Version 1.002 update was released on 2015-04-20, which involved turning a very large crank on something that has a very large number of moving parts. The updated region-specific subset OTFs are also available on Typekit via desktop sync.

Google’s corresponding Noto Sans CJK fonts, which differ from Source Han Sans only by name, were also updated to Version 1.002 at the same time, and reflect the same changes.
Continue reading…

Collections… …of the OpenType/CFF Variety

Let it be known that the “OpenType Collection” (OTC) format was born on 09/21/2011 at Pho Minh Restaurant in Cupertino, California. Present from Adobe were the following: David Lemon, Ken Lunde, Sairus Patel, and Read Roberts. Present from Apple were Antonio Cavedoni, Julio Gonzalez, Yasuo Kida, Peter Lofting, and Tony Tseung. — Adobe & Apple

The above declaration paved the way for supporting (CFF-based) OpenType Collections in Apple’s OS X (beginning from Version 10.8) and in Adobe’s applications (beginning from CS6).
Continue reading…

Source Han Sans: OTF, OTC, Super OTC, or Subset OTF?

Before I begin the series of articles about what went into building Source Han Sans, I think that it is worth writing a few things about actually installing and using the fonts, including how to determine which of the four deployment formats best suits your needs.
Continue reading…

IDS + OpenType: Pseudo-encoding Unencoded Glyphs


For those who are not aware, there are twelve IDCs (Ideographic Description Characters) in Unicode, from U+2FF0 through U+2FFB, that are used in IDSes (Ideographic Description Sequences) which are intended to visually describe the structure of ideographs by enumerating their components and arrangement in a hierarchical fashion. Any Unicode character can serve as a IDS component, and the IDCs describe their arrangement. The IRG uses IDSes as a way to detect potentially duplicate characters in new submissions. All existing CJK Unified Ideographs have an IDS, and new submissions require an IDS.

This article describes a technique that uses IDSes combined with OpenType functionality to pseudo-encode glyphs that are unencoded or not yet encoded. If memory serves, it was Taichi KAWABATA (川幡太一) who originally suggested this technique.
Continue reading…

U+4E00 versus U+2F00

Not all PDF authoring applications are the same, in terms of the extent to which they preserve the text content of the original document. Of course, this is not necessarily the fault of the PDF authoring application, but rather it is due to a disconnect between the PDF authoring process and access to the text content of the original document.

The best example for demonstrating this is to create a document that includes the two kanji 一 (U+4E00) and ⼀ (U+2F00). The reason why these two characters represent a good example is because in mainstream Japanese fonts, mainly those that are based on the Adobe-Japan1-x ROS, both map to the same glyph, specifically CID+1200.

If you download and unpack the 4E00vs2F00.zip file, you will find two PDF files, an Adobe InDesign file, and an MS Word file. If you open the original documents and search for 一 (U+4E00), you will find only a single instance, which is the one that is marked by the Unicode scalar value. However, if you open the respective PDF files, you will notice a difference. The one that is based on the MS Word file now includes two instances of 一 (U+4E00), and ⼀ (U+2F00) is no longer included in its content. You can search a PDF file by Unicode scalar value by using the “\uXXXX” notation, such as \u4E00 for U+4E00 (一). (Note: Depending on the version of MS Word that is being used, the PDF file may instead include two instances of (U+2F00). I am using Microsoft Word for Mac 2011 Version 14.3.8.)

Adobe InDesign has a built-in PDF library that has direct access to the text content, and is thus able to inject it into the text layer of the PDF file that it produces. MS Word uses a different pathway for producing a PDF file, one that does not have access to the text content of the original document.