To GPOS, Or Not To GPOS

I will open this article by stating that OpenType features are almost always GSUB (Glyph SUBstitution) or GPOS (Glyph POSitioning). The former table specifies features that substitute glyphs with other glyphs, usually in a 1:1 fashion, but not always. The latter table specifies features that alter the metrics of glyphs, or the inter-glyph metrics (aka kerning).

The focus of this particular article will be the 'vert' (Vertical Alternates) feature, which substitutes a glyph with the appropriate glyph for vertical writing, and is invoked when in vertical writing mode. In other words, it’s a GSUB feature, and one that needs to be invoked for proper vertical writing. Current implementations that support the 'vert' GSUB feature, which tend to be CJK fonts, substitute glyphs with their vertical forms on a 1:1 basis, though language-tagging may affect the outcome for Pan-CJK fonts, such as the Adobe-branded Source Han Sans and the Google-branded Noto Sans CJK, which support multiple languages.
Continue reading…

Resurrecting L2/14-006

This article is largely a test, but also serves to start the process of resurrecting L2/14-006 (Proposal to add standardized variation sequences for nine characters) for discussion at UTC #151 in early May.

Liang Hai (梁海) brought up this document for discussion at UTC #150 last week, and while I had an opportunity to have it accepted by the UTC, to be included in Unicode Version 10.0 (June, 2017), I decided that it was prudent to instead prepare a revised proposal that is more complete, mainly because L2/14-006 was submitted and discussed prior to the first release of the Adobe-branded Source Han Sans and Google-branded Noto Sans CJK Pan-CJK typeface families. This functionality was implemented in those typeface families via the 'locl' GSUB feature, which requires the text to be language-tagged. In other words, I learned a lot since L2/14-006 was discussed, and prefer to submit a more complete proposal, even if it means waiting for Unicode Version 11.0 (June, 2018).
Continue reading…

Year of the Rooster

It is now January 28, 2017 in China and other Chinese-speaking regions.

I’d like to use this opportunity to welcome the Year of the Rooster, and to wish a Chinese New Year to all of my Chinese friends, colleagues, and blog readers. May this year be safe, prosperous, and enjoyable.
Continue reading…

The Tale of U+27BF & Adobe-Japan1-6 CID+20958

As recorded in The Adobe-Japan-6 Character Collection, it was released on 2004-03-05, and one of the glyphs that was added was CID+20958. According to the Adobe-Japan1-6 ordering file, its glyph name is freedial, and is assigned to the Dingbats FDArray element for the purpose of hinting. Of course, if you look for CID+20958 in Adobe Tech Note #5078, you can find it on the bottom of page 54, immediately to the right of CID+20957 that maps from U+26BD ⚽ SOCCER BALL, though it is blank. This is simply because Adobe does not have the rights to use NTT’s trademarked FreeDial mark. CID+20958 was included in Adobe-Japan1-6 for the benefit of font developers who do have the rights to use this mark, and can thus include the glyph in their fonts.
Continue reading…

UTC #150

UTC #150, the 150th Unicode Technical Committee meeting, takes place later this month, from 2017-01-23 through 2017-01-26, and will be hosted by our friends at Apple in Sunnyvale, California. I will attend as Adobe’s representative. As usual, there will be CJK- and IRG-related items to discuss. One item will be the UTC’s review of IRG Working Set 2015 Version 3.0 (aka CJK Unified Ideographs Extension G), L2/17-006, which I recently finished.

A major focus of UTC #150 will be Unicode Version 10.0, which is scheduled to be released in June of this year. Unicode Version 10.0 will include 21 additional characters appended to the URO (Unified Repertoire & Ordering), along with Extension F (7,473 characters), as shown here.

While we’re on the subject of Unicode, be sure to explore the sidebar on the right side of this blog’s landing page, which includes links to several useful Unicode-related resources.

🐡

Tales from the “Green Book” — ehandler.ps

Please pardon the apparent non-CJK interruption in the form of this particular article, but I wanted to bring to the readership’s attention a new open source project that has a very long history: ehandler.ps.
Continue reading…

Combining Jamo Test #3

Unlike the first and second similarly-titled articles that I published last month, this article will focus on a minor efficiency for the combining jamo feature of the Adobe-branded Source Han Sans and Google-branded Noto Sans CJK Pan-CJK typeface families.
Continue reading…

New For Unicode Version 10.0: Hentaigana—変体仮名

Prior to Japan’s script reform of 1900, there was more than one shape associated with each syllable of the hiragana syllabary. There is now only one shape associated with each syllable. The now-obsolete and nonstandard shapes are referred to as hentaigana (変体仮名), which simply means variant kana. Hentaigana are still in use today in Japan, but are limited to Japan’s family registry (戸籍 koseki in Japanese) and specialized uses, such as business signage and other decor that are specifically designed to convey a feeling of nostalgia or traditional charm.

In addition to the Wikipedia article that is linked from the previous paragraph, 『変体仮名のこれまでとこれから—情報交換のための標準化』 (The past, present, and future of hentaigana: Standardization for information processing) by TAKADA Tomokazu (高田智和) et al. and About the inclusion of standardized codepoints for Hentaigana by YADA Tsutomu (矢田勉) serve as excellent reading material.
Continue reading…

Combining Jamo Test #2—Please Ignore

To (significantly) expand yesterday’s super exciting article, and in the continued interest of (stress-)testing the extent to which combining jamo works in various browsers—and when being served as a fully-functional webfont via Adobe Typekit—if you click here, you will open a 40MB HTML file that includes all 1,626,875 possible three-character combining jamo sequences (125 leading consonants, 95 vowels, and 137 trailing consonants) rendered using Adobe Clean Han and its 'ljmo' (Leading Jamo Forms), 'vjmo' (Vowel Jamo Forms), and 'tjmo' (Trailing Jamo Forms) GSUB features.

🐡

Combining Jamo Test #1—Please Ignore

In the interest of testing the extent to which combining jamo works in various browsers—and when being served as a fully-functional webfont via Adobe Typekit—if you click here, you will open a 200K HTML file that includes all 11,875 possible two-character combining jamo sequences (125 leading consonants and 95 vowels) rendered using Adobe Clean Han and its 'ljmo' (Leading Jamo Forms), 'vjmo' (Vowel Jamo Forms), and 'tjmo' (Trailing Jamo Forms) GSUB features.

🐡